Home СОПРОМАТ 1.2. Гипотезы и допущения, принятые в сопротивлении материалов

1.2. Гипотезы и допущения, принятые в сопротивлении материалов

1.2.  Гипотезы и допущения, принятые в сопротивлении материалов
1.2.  Гипотезы и допущения, принятые в сопротивлении материалов
1.2.  Гипотезы и допущения, принятые в сопротивлении материалов

 

1.2. ГИПОТЕЗЫ И ДОПУЩЕНИЯ, ПРИНЯТЫЕ В СОПРОТИВЛЕНИИ МАТЕРИАЛОВ 1. Гипотеза сплошности и однородности — материал представляет собой однородную сплошную среду; свойства материала во всех точках тела одинаковы и не зависят от размеров тела. Атомистическая теория дискретного строения вещества во внимание не принимается. Гипотеза позволяет не учитывать особенности кристаллической структуры металла, разный химический состав и прочностные свойства связующего и наполнителей в пластмассах, бетонах (щебень, песок, цемент), наличие сучков в древесине. 2. Гипотеза об изотропности материала – физико-механические свойства материала одинаковы по всем направлениям. В некоторых случаях предположение об изотропии неприемлемо, материал является анизотропным. Так, анизотропными являются древесина, свойства которой вдоль и поперек волокон различны, а также армированные (композиционные) материалы. 3. Гипотеза об идеальной упругости материала – тело способно восстанавливать свою первоначальную форму и размеры после устранения причин, вызвавших его деформацию. 4. Гипотеза о совершенной упругости материала – перемещения точек конструкции в упругой стадии работы материала прямо пропорциональны силам, вызывающим эти перемещения (справедлив закон Гука). В действительности реальные тела можно считать упругими только до определенных величин нагрузок, и это необходимо учитывать, применяя формулы сопротивления материалов. 5. Гипотеза Бернулли о плоских сечениях – поперечные сечения, плоские и нормальные к оси стержня до приложения к нему нагрузки, остаются плоскими и нормальными к его оси в деформированном состоянии; при изгибе сечения поворачиваются не искривляясь. 6. Принцип Сен-Венана – в сечениях, достаточно удаленных от мест приложения нагрузки, деформация тела не зависит от конкретного способа нагружения и определяется только статическим эквивалентом нагрузки. Резко выраженная неравномерность распределения напряжений по сечению 2-2, показанная на рисунке, постепенно выравнивается (сечение 3-3) и на удалении, равном ширине сечения (сечения 4-4 и 5-5), исчезает. 7. Принцип Д’Аламбера – если к активным силам, действующим на точки механической системы, и реакциям наложенных связей присоединить силы инерции, то получится уравновешенная система сил. Принцип используется в расчетах на прочность при динамическом действии сил. 8. Принцип независимости действия сил (принцип суперпозиции) – результат воздействия нескольких внешних факторов равен сумме результатов воздействия каждого из них, прикладываемого в отдельности, и не зависит от последовательности их приложения. Это же справедливо и в отношении деформаций. 9. Принцип начальных размеров (гипотеза о малости деформаций) – деформации в точках тела настолько малы по сравнению с размерами деформируемого тела, что не оказывают существенного влияния на Рис. 1.1. Распределение нормальных напряжений в поперечных сечениях стержня при растяжении сосредоточенной силой А – площадь поперечного сечения взаимное расположение нагрузок, приложенных к телу. Допущение применяют при составлении условий статики, считая тело абсолютно твердым. 10. Допущение об отсутствии начальных внутренних усилий в теле до приложения нагрузки. Почти во всех реальных деталях и элементах конструкций указанное допущение полностью не выполняется. Внутренние напряжения возникают в деревянных конструкциях вследствие не- равномерного высыхания; в стальных и чугунных отливках – вследствие неравномерного охлаждения; в стальных деталях – вследствие термической (закалка…) и механической (шлифование…) обработок. Формирование колесных пар для железнодорожных вагонов осуществляют путем за- прессовки колес на ось. За счет натяга создаются напряжения в ступице колеса и подступичной части оси. Замечание о точности расчетов и округлении результатов. С учетом изложенных гипотез и допущений, а также разбросов результатов экспериментов по определению механических свойств, точность инженерных расчетов не превышает 3–5 %. В некоторых случаях погрешность 10–15 % считают приемлемой. На практике, если нет специальных указаний, результат округляют до трех значащих цифр. Например, результат 568 234 следует округлить до 568 000, а результат 0,00237648 – до 0,00238 или 2,38•10-3.

 

НАШИ УСЛУГИ


Поздравляем с началом нового учебного года

УЧЕБНЫЕ МАТЕРИАЛЫ

Типовые задания