Home СОПРОМАТ 1.3. Типы схематизаций, используемые в сопротивлении материалов

1.3. Типы схематизаций, используемые в сопротивлении материалов

Типы схематизаций, используемые в сопротивлении материалов
Типы схематизаций, используемые в сопротивлении материалов
Типы схематизаций, используемые в сопротивлении материалов


1.3. Типы схематизаций, используемые в сопротивлении материалов Реальный объект – исследуемый элемент конструкции, взятый с учетом всех своих особенностей: геометрических, физических, механических и других. Расчет реального объекта является или теоретически невозможным, или практически неприемлемым по своей сложности. Поэтому в сопротивлении материалов используют расчетные схемы, в которых применяют упрощения, облегчающие расчет. Расчетная схема – идеализированная схема, отражающая наиболее существенные особенности реального объекта, определяющие его поведение под нагрузкой. В зависимости от постановки задачи и требуемой точности ее решения для одной и той же конструкции может быть предложено несколько расчетных схем. Так же и одна расчетная схема может соответствовать различным конструкциям. Основная цель сопротивления материалов – создать практически приемлемые простые приемы (методики) расчета типовых наиболее часто встречающихся элементов конструкций. Необходимость перехода от реального объекта к расчетной схеме (с целью упрощения расчетов) заставляет вводить схематизацию понятий. Выделяют следующие типы схематизации: физическая схематизация; геометрическая схематизация; силовая схематизация. Физическая схематизация (модель материала) Все изучаемые тела считают выполненными (изготовленными) из материалов, наделенными идеализированными свойствами. Материал элементов конструкций считают сплошным, однородным, изотропным и линейно упругим (см. выше гипотезы 1, 2, 3, 4). Геометрическая схематизация (модель формы) Виды конструктивных элементов, встречающихся в сооружениях и машинах, при всем их разнообразии, можно свести к четырем основным категориям. Массивное тело – тело, у которого все три размера величины одного порядка (рис. 1.3). Это – фундаменты сооружений, подпорные стенки, станины станков и т. п. Брус – тело, одно из измерений которого, значительно больше двух других. Брусья с прямолинейной осью постоянного сечения (а), переменного сечения (б), ступенчатый (в), тонкостенный (толщина стенок значительно меньше габаритных размеров сечения) стержень (г), с криволинейными осями (д), (е), (ж) (рис. 1.4). Оболочка – тело, ограниченное двумя криволинейными поверхностями, расположенными на близком расстоянии одна от другой (рис. 1.5). Геометрическое место точек, равноудаленных от обеих поверхностей оболочки, называют срединной поверхностью. По форме срединной поверхности различают оболочки цилиндрические, конические, сферические и др. К оболочкам относятся тонкостенные резервуары, котлы, купола зданий, обшивки фюзеляжей, крыльев (и других частей летательных аппаратов), корпуса судов и т. п. Пластина – тело, ограниченное двумя параллельными поверхностями (рис. 1.6). Пластины могут быть круглыми, прямоугольными и иметь другие очертания. Толщина пластин, как и оболочек, может быть постоянной или переменной. Пластинами являются плоские днища и крышки резервуаров, перекрытия инженерных сооружений, диски турбомашин и т. п. Тела, имеющие эти основные формы, и являются объектами расчета на прочность, жесткость и устойчивость. В настоящем учебном пособии рассматриваются разделы, связанные с расчетом брусьев с прямолинейной геометрической осью. Схематизация опор Схемы реальных опорных устройств можно свести к трем типам. Шарнирно-подвижная опора балки (рис. 1.7, а) препятствует только вертикальному перемещению конца балки, но ни горизонтальному перемещению, ни повороту. Такая опора при любой нагрузке дает одну реакцию. Шарнирно-неподвижная опора (рис. 1.7, б) препятствует вертикальному и горизонтальному перемещениям конца балки, но не препятствует повороту сечения. Дает две реакции: вертикальную и горизонтальную. Заделка (защемление) (рис. 1.7, в). Опора препятствует вертикальному и горизонтальному перемещениям конца балки, а также повороту сечения. Дает три реакции: вертикальную и горизонтальную силы и пару сил. Силовая схематизация (модель нагружения) В нагруженном теле, находящемся в равновесии, внешние нагрузки стремятся вызвать деформацию тела, а внутренние усилия стремятся сохранить тело как единое целое. Внешние нагрузки – силы взаимодействия между рассматриваемым элементом конструкции и другими телами, связанными с ним. Классификация внешних нагрузок производится по трем признакам: способу приложения, продолжительности действия, характеру изменения. По способу приложения: сосредоточенные, распределенные. Сосредоточенными (рис. 1.8, а) называют силы, приложенные к площадкам, размеры которых малы по сравнению с размерами объекта, например, давление обода колеса на рельс. Размерность Н, кгс (ньютон, килограмм силы). Распределенными по площади (поверхностными) (рис. 1.8, б) называют силы, приложенные к площадкам контакта, например, давление жидкости или газа на стенки сосуда, снеговая нагрузка на кровлю здания. Давление выражается в единицах силы, отнесенных к единице площади, Н/м2, кгс/см2. Производная единица Паскаль: 1 Па = 1 Н/м2. Распределенные по длине (рис. 1.9, а) равномерно или по заданному закону (треугольному, параболическому…). Размерность Н/м, кгс/м. Объемные силы (рис. 1.9, б) непрерывно распределены по объему, занимаемому элементом, например, сила тяжести, сила инерции. Характеризуются интенсивностью, то есть отношением единицы силы к единице объема, Н/м3, гс/см3. По продолжительности действия: постоянные и временные. Постоянные действуют в течение всего времени существования конструкции, например, нагрузка на фундамент здания. Временные действуют на протяжении отдельных периодов эксплуатации объекта, например, давление газа в баллоне. По характеру изменения в процессе приложения Статические – постоянные (нагрузка от собственного веса), или медленно изменяющиеся так, что силами инерции вследствие ускорения можно пренебречь (изменение давления от снеговой нагрузки). Динамические – вызывающие в конструкции или отдельных ее элементах большие ускорения, которыми пренебречь нельзя. Величина этой нагрузки значительно изменяется за малые промежутки времени, например, ударная. Повторно-переменные – изменяющиеся по некоторому закону. Примеры: изменение натяжения ветви ремня (или цепи) в зависимости от ее положения в текущий момент времени – сбегающая или набегающая ветвь на ведущий шкив (звездочку). Изменение натяжения спицы велосипедного колеса в зависимости от ее положения (верхнее или нижнее в данный момент вращения колеса).

 

НАШИ УСЛУГИ




УЧЕБНЫЕ МАТЕРИАЛЫ

Типовые задания