Home СОПРОМАТ 9.3. Прочность при переменных нагрузках

9.3. Прочность при переменных нагрузках

Прочность при переменных нагрузках
Прочность при переменных нагрузках 2
Прочность при переменных нагрузках 3
Прочность при переменных нагрузках 4
Прочность при переменных нагрузках 5

9.3. ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ НАГРУЗКАХ

Большинство деталей машин, энергетических установок, химических аппаратов испытывают переменные напряжения, циклически изменяющиеся во времени. В некоторых случаях доля циклической составляющей в общей нагрузке невелика и при расчетах на прочность не учитывается. В других случаях пренебрежение переменной составляющей нагрузки или ее неправильный учет приводит к авариям и разрушениям подчас с тяжелыми последствиями и человеческими жертвами. Анализ случаев поломок машин свидетельствует о том, что большинство поломок (по литературным данным 80–90 %) происходит вследствие усталости металлов. Этот вид разрушения металлов наблюдается при повторном и повторно-переменном действии нагрузки. Усталость материалов Усталость – процесс постепенного накопления повреждений под действием переменных напряжений, приводящий к изменению свойств, образованию трещин, их развитию и разрушению. Выносливость – свойство материала противостоять усталости. Весь диапазон чисел циклов, где возникает разрушение от переменных нагрузок, условно разбит на две области: малоцикловой и многоцикловой усталости. Усталостное повреждение – необратимое изменение физико- механических свойств материала объекта под действием переменных напряжений. Накопление повреждений начинается задолго до окончательного разрушения. Разрушение, как правило, наступает внезапно. Усталостное разрушение – разрушение материала нагружаемого объекта до полной потери его прочности или работоспособности вследствие распространения усталостной трещины. Усталостная трещина – частичное разделение материала под действием переменных напряжений. Циклы напряжений В подавляющем числе случаев напряжение в элементах механических систем изменяется периодически. Законы изменения во времени t переменных напряжений σ могут быть различными, что обусловлено кинематикой механизма и взаимодействием движущихся систем. Некоторые виды циклов представлены на рис. 9.1. Совокупность последовательных значений напряжений за один период их изменения Т называют циклом напряжений или просто циклом. Циклом называют замкнутую однократную смену напряжений, проходящих непрерывный ряд значений. Время Т, в течение которого протекает один цикл, называют периодом. Максимальное напряжение цикла σmax – наибольшее по алгебраическому значению напряжение цикла. Минимальное напряжение цикла σmin – наименьшее по алгебраическому значению напряжение цикла. Среднее напряжение цикла σm – постоянная составляющая цикла напряжений, равная алгебраической полусумме максимального и минимального напряжений цикла: Амплитуда напряжений цикла σa – наибольшее числовое положительное значение переменной составляющей цикла, равной алгебраической полуразности: Коэффициент асимметрии цикла напряжений Rσ – отношение минимального напряжения цикла к максимальному. При испытаниях на выносливость наиболее употребительны симметричный и отнулевой циклы. Рис. 9.2. параметры цикла напряжений Рис. 9.1. Виды циклов напряжений: а – треугольный; б – трапецеидальный;в – гармонический; г – результат сложения трех гармонических циклов с различной частотой и амплитудой Симметричный цикл напряжений – цикл, у которого максимальное и минимальное напряжения равны по абсолютному значению, но противоположны по знаку Rσ = –1. Отнулевой цикл напряжений – знакопостоянный цикл напряжений, изменяющихся от нуля до максимума Rσ = 0. Кривая усталости и предел выносливости Кривая усталости – график, характеризующий зависимость между максимальными напряжениями σmax или амплитудами цикла σa и циклической долговечностью N одинаковых образцов, построенный при фиксированном среднем напряжении цикла σm = const, или при заданном коэффициенте асимметрии цикла напряжений R = const. Кривую усталости представляют как в полулогарифмических (σ − ℓg N), так и в двойных (ℓg σ − ℓg N) логарифмических координатах (реже). Благодаря особенности логарифмической шкалы на ней можно отложить циклическую долговечность, исчисляемую как единицами, так десятками и сотнями миллионов циклов без потери физической сущности явления. Зависимость между действующими напряжениями и числом циклов до разрушения имеет вид, называемый в литературе S-образным, что обусловлено наличием на кривой усталости двух перегибов и трех основных участков, отличающихся типом разрушения. В пределах I участка происходит выделение и накопление односторонней деформации, приводящей к разрушению, по всем признакам аналогичному статическому растяжению. Из-за этого участок получил название участка (области) квазистатического разрушения. Протяженность I участка зависит от характеристик прочности и пластичности, коэффициента асимметрии цикла напряжений и составляет от нескольких тысяч до нескольких десятков тысяч циклов. При симметричном цикле напряжений (R = –1) участок I вырождается. В пределах участка III остаточное удлинение δ и сужение ψ почти отсутствуют (ψ → 0, δ → 0). Разрушение имеет хрупкий характер и происходит от усталостной трещины (усталостное разрушение). В некоторых случаях участок кривой усталости переходит в горизонтальную линию. Рис. 9.3. Характерные участки кривой усталости при асимметричном нагружении ответствующую пределу выносливости σR. Этот участок получил название участка (области) многоцикловой усталости. Многоцикловая усталость – усталость материала, при которой усталостное повреждение или разрушение происходит в основном при упругом деформировании. На участке II происходит переход от квазистатического типа разрушения (участок I) к усталостному (участок III). Для участка II характерны признаки двух типов разрушения: хрупкого от усталостной трещины и вязкого – от накопленной односторонней деформации. На фоне развитой шейки можно наблюдать трещины разной длины и степени раскрытия. Этим участком ограничивается область малоцикловой усталости. Малоцикловая усталость – усталость материала, при которой усталостное повреждение или разрушение происходит при упругопластическом деформировании.. Предел выносливости σR – максимальное по абсолютному значению напряжение цикла, при котором еще не происходит усталостное разрушение до базы испытаний (см. рис. 9.3). Для симметричного цикла σR ≡ σ–1. Для отнулевого цикла σR ≡ σ0. База испытаний – предварительно задаваемая наибольшая продолжительность испытаний на усталость. Для черных металлов принята база, равная 107 циклов; для цветных металлов – 108 циклов. Иногда для оценки усталостной прочности назначают другую базу испытаний, например 104 или 105. Тогда определяют ограниченный предел выносливости, со- ответствующий заданному числу циклов. Предел выносливости определяют по результатам испытаний. Природа накопления усталостных повреждений такова, что результаты испытаний могут иметь значительный случайный разброс, на порядок и более. Для получения достоверных характеристик прочности материала при циклическом нагружении требуется от нескольких десятков до нескольких сотен однотипных образцов. Метод трудоемок и продолжителен по времени. Так, при испытании на изгиб с вращением при частоте нагружения n = 3000 об/мин для наработки базы испытаний 107 циклов одним образцом требуется 3333 минуты, или 55,5 часов, или 2,3 суток при безостановочной работе. Полный цикл испытаний занимает несколько недель или месяцев. Разработаны ускоренные методы испытаний, а также предлагаются эмпирические зависимости, устанавливающие связь предела выносливости с характеристиками прочности и пластичности. Расчеты на выносливость при переменном нагружении Из многочисленных факторов, влияющих на усталостную прочность, особо выделим следующие: 1) концентрация напряжений; 2) абсолютные размеры детали (масштабный фактор); 3) качество обработки поверхности и состояние поверхностного слоя; 4) состояние макро- и микроструктуры изделия; 5) состояние внешней среды: температура, облучение, агрессивность; 6) технологические методы упрочнения. В связи с этим расчеты на усталость выполняют, как правило, поверочные. Вычисляют предел выносливости σ-1д реальной детали, ориентируясь на предел выносливостиσ−1 лабораторного образца (гладкого, полированного), полученный в результате статистической обработки результатов экспериментов: где К – коэффициент, учитывающий влияние перечисленных выше факто- ров. Вычисляют коэффициенты запаса прочности отдельно по нормальным напряжениям при растяжении или изгибе и по касательным напряжениям при кручении: В случае одновременного действия нормальных и касательных напряжений общий коэффициент запаса прочности находят с учетом обоих частных коэффициентов Деталь считают работоспособной, если n ≥ [n]. Нормативный запас прочности [n] может зависеть от следующих факторов: 1) достоверной точности определения усилий и напряжений и напряжений; 2) однородности материала; 3) культуры производства и технологии изготовления детали; В зависимости от перечисленных выше факторов выделяют три группы значений допускаемого коэффициента запаса прочности при расчетах на выносливость: 1) группа [n] = 1,3–1,5 назначается при повышенной точности расчета с использованием экспериментальных данных определения усилий для деталей, изготовленных из однородного материала при качественной технологии и высокой культуре производства (например, коленчатые валы); 2) группа [n] = 1,5–2 назначается при недостаточно полном объеме экспериментальной информации о нагрузках и прочности детали, при среднем уровне культуры производства, но в условиях систематического дефектоскопического контроля; 3) группа [n] = 2–3 назначается при малом объеме или отсутствии экспериментальной информации, высоком уровне производства.

 

НАШИ УСЛУГИ




УЧЕБНЫЕ МАТЕРИАЛЫ

Типовые задания